Geophysics

THIS DISCIPLINE IS UNIQUE AS IT . . .

. . is an interdisciplinary, broad, and challenging as a student wants to make it.
The Department of Geophysics is also one of the smaller departments on campus, so students have many opportunities to get to know each other and the faculty.

Who excels in this discipline?

Geophysicists employ a broad range of subjects to do their work—mainly math, physics, computers/signal processing, and geology. Students who enjoy these subjects, who enjoy a combination of working at a desk and outside, who enjoy solving problems, who like to think creatively, would do very well in geophysics.

What are some of the most popular research areas for this discipline?

The future of this discipline includes... Civil and infrastructural problems (imaging and evaluation of bridges, dams, roads, underground pipelines), water and environmental management, climate change.

- problems associated with hazards (e.g., earthquakes, volcanoes, avalanches), the extraction of hydrocarbons and metals, geothermal energy, planetary exploration, and groundwater and aquifer management.
- Civil and infrastructural problems (imaging and evaluation of bridges, dams, roads, underground pipelines), water and environmental management, climate change.
- Geophysicists employ a broad range of subjects to do their work—mainly math, physics, computers/signal processing, and geology. Students who enjoy these subjects, who enjoy a combination of working at a desk and outside, who enjoy solving problems, who like to think creatively, would do very well in geophysics.

What misconceptions do students often have about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

Do students who graduate in this discipline often pursue graduate work (Masters, PhD, etc.)?

Many of our students go on to graduate school. Most go onto graduate programs in geophysics. Often, they move onto grad school to beef up their job options, but some choose the grad school route because they want a career in research, or in academia, or both.

What are some of the most popular research areas for this discipline?

Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.

What are the most common misconceptions about this discipline?

The most common misconception is that geophysics majors always go to work for the oil companies. Many of our undergraduates do research projects in the areas of geophysical hazards—earthquakes, avalanches, volcanoes. They also do research projects involving archaeology, aquifers, and environmental topics like vegetation analysis.